edexcel 쁯

Mark Scheme (Results)
 Summer 2014

IAL Chemistry (WCH04/01)
General Principles of Chemistry I

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code IA038356*
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{4}$	D		$\mathbf{1}$

Question	Correct Answer	Reject	Mark
Number			
$\mathbf{5}$	\mathbf{C}		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{6 (a)}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{6 (b)}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{7 (a)}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{7 (b)}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}(\mathbf{a})$	\mathbf{C}		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5 (b)}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7}$	B		$\mathbf{1}$

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (a)}$	$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ ALLOW any order i.e. $\mathrm{C}_{10} \mathrm{OH}_{18} / \mathrm{H}_{18} \mathrm{C}_{10} \mathrm{O} / \mathrm{H}_{18} \mathrm{O} \mathrm{C}_{10} / \mathrm{OC}_{10} \mathrm{H}_{18} /$ $\mathrm{OH}_{18} \mathrm{C}_{10}$ IGNORE $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{CHO}$ and other structural formulae as working COMMENT Allow numbers not as subscripts e.g.C10H18O Structural formula without correct molecular formula will not score.	superscripts	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (b)}$		more than one carbon atom indicated	$\mathbf{1}$
	Circle as shown ALLOW * or any other clear indication of the correct carbon atom		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (\mathbf { c) (i) }}$	Stand alone marks First mark restricted / barrier to rotation around/due to C=C/П bond ALLOW no/lack of/inhibits (free) rotation around/due to C=C/П bond	(1) without reference to C=C	molecule does not rotate
	Second mark two different atoms/groups attached to each C in C=C /each C in C=C must not have two groups the same attached to it OR 4 different atoms/groups attached to C=C	molecules/compounds attached to C atoms	
ALLOW 2 highest priority/molecular mass/atomic number atoms/groups on opposite sides (of C=C) is the E isomer ALLOW 2 highest priority/molecular mass/atomic number atoms/groups on the same side (of C=C) is the Z isomer ALLOW correct diagrams to show any of these points			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (c) (\text { ii) }}$	circle around double bond as shown ALLOW any clear indication of the correct double bond or a circle around either of the two carbon atoms in this bond.	both C=C bonds circled the circle extended to include the C=O and/or C-H bond(s) on the right	$\mathbf{1}$
ALLOW the circle being extended to the adjacent carbon atoms attached to the C=C.			

Question Number	Acceptable Answers		Reject	Mark
18(d)	Any reagent and matching observation from		Just an observation not linked to a reagent	2
	reagent	observation		
	Fehling's (solution and heat/boil)	(blue solution) to red / red-brown/brown /orange and precipitate		
	Benedict's (solution and heat/boil)	(blue solution) to red / red-brown/brown /orange and precipitate		
	Tollens' (reagent) /ammoniacal silver nitrate (and warm)	silver mirror or grey/black/silver and ppt		
	ALLOW potassium/sodium dichromate((VI)) and sulfuric acid (and warm) or acidified dichromate((VI) ions and warm) or acidified (potassium/sodium) dichromate((VI))	(orange) to green/blue		
	ALLOW Schiff's reagent	pink/purple/magenta		
	ALLOW correct formulae/ names IGNORE Brady's reagent/2,4- DNPH etc IGNORE sodium hydroxide in Tollens' reagent			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (e) (i)}$	In (e)(i) and (e)(ii), penalise any structure other than skeletal only once, in the item where it appears first	any structure with an OH group	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (e) (i i)}$In (e)(i) and (e)(ii), penalise any structure other than skeletal only once, in the item where it appears first	any structure without both $\mathrm{C}=\mathrm{C}$ the E isomer	$\mathbf{1}$	
	ALLOW O- for OH ALLOW -O-H for OH ALLOW the OH on either side of the structure		
ALLOW just 1 H shown on the C with the OH attached ALLOW any unambiguous skeletal formula showing the alcohol (with or without the 2Hs on end C)			

(Total for Question 18 = 9 marks)

Question Number	Acceptable Answers	Reject	Mark
19(a)(i)	First marking point - Orders $\mathrm{H}_{2} \mathrm{O}_{2}$ first/1st order/order 1 $\mathrm{H}^{+} \quad$ zero/0 order/order 0 both correct Explanations Second marking point $\mathrm{H}_{2} \mathrm{O}_{2}$ - as $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ doubles and [H^{+}] and $\left[\mathrm{I}^{-}\right]$stay the same/other concentrations stay the same/using experiments 1 and 2 (this could be shown on the table) and the rate doubles/working to show this ALLOW reverse argument ie as $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ halves and [H^{+}] and [I^{-}] stay the same/other concentrations stay the same/using experiments 1 and 2 (this could be shown on the table) and the rate halves/working to show this Third marking point H^{+}- as $\left[\mathrm{H}^{+}\right]$doubles/halves and [$\mathrm{H}_{2} \mathrm{O}_{2}$] and [I^{-}] stay the same/other concentrations stay the same/using experiments 1 and 3 (this could be shown on the table) Note - do not penalise omission of this if it has been penalised in second marking point and the rate stays the same /working to show this OR As $\left[\mathrm{H}^{+}\right]$doubles and $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ halves and [I^{-}] stays the same/using experiments 2 and 3 (this could be shown on the table) (also see note above) and rate halves due to $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ change so rate does not change due to $\left[\mathrm{H}^{+}\right] /$working to show this ALLOW reverse argument	Either/both explanations if inconsistent with order(s) stated above	3

Question	Acceptable Answers	Reject	Mark
19(a)(ii)	First marking point First/1st order /order 1 Second marking point-consequential on correct order graph shows rate is (directly) proportional to [I^{-}] OR as $\left[\mathrm{I}^{-}\right]$increases, the rate increases proportionally OR as $\left[\mathrm{I}^{-}\right.$] doubles, the rate doubles ALLOW graph (of rate against [$\left.\mathrm{I}^{-}\right]$) is a straight line (through the origin) /gradient is constant ALLOW Increase in rate is constant	Any other order scores zero overall iodine/ I_{2} Penalise once only in (ii) and (iii)	2

Question Number	Acceptable Answers	Reject	Mark
19(a) (iii)	rate/r/R $=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]$	$\left[\mathrm{I}_{2}\right]$	$\mathbf{1}$
	ALLOW $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]^{1}\left[\mathrm{I}^{-}\right]^{1}$		
	ALLOW $\left[\mathrm{H}^{+}\right]^{0}$		
	ALLOW upper case K		
consequential on their orders from (a)(i) and (ii)			

Question Number	Acceptable Answers	Reject	Mark
19(a) (iv)	2.8×10^{-5}	(1)	
dm $^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	(1)		$\mathbf{2}$
	ALLOW units in any order		
Note: value and units are consequential on their rate equation from (a)(iii) and must be consistent Ignore SF unless 1.	Comment If zero order wrt $\left[\mathrm{I}^{-}\right], k=1.4 \times 10^{-5} \mathrm{~s}^{-1}$		

Question Number	Acceptable Answers	Reject	Mark
19(b)(i)	(Rate determining step) Any balanced equation that has just $\mathbf{2 N O}_{\mathbf{2}}$ on the LHS (Step 2) Any balanced equation for which the two steps combine to the overall equation/double the overall equation Examples of matching pairs: $\begin{aligned} & 2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4} \\ & \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{NO}_{2}+\mathrm{CO}_{2} / \\ & \mathrm{N}_{2} \mathrm{O}_{4}+2 \mathrm{CO} \rightarrow \quad 2 \mathrm{NO}+2 \mathrm{CO}_{2} \end{aligned}$ OR $\begin{aligned} & 2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2} \\ & 2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2} / \mathrm{CO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \end{aligned}$ OR $2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{O}_{2}$ $\mathrm{N}_{2}+2 \mathrm{O}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{NO}_{2}+\mathrm{CO}_{2}$ OR $\begin{aligned} & 2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+2 \mathrm{O} \\ & \mathrm{NO}+2 \mathrm{O}+\mathrm{CO} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2} \end{aligned}$ OR $\begin{aligned} & 2 \mathrm{NO}_{2} \rightarrow \mathrm{NO}+\mathrm{NO}_{3} \\ & 2 \mathrm{CO}+\mathrm{NO}_{3} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{NO} \end{aligned}$ ALLOW $\mathrm{NO}_{2}+\mathrm{NO}_{2}$ on LHS NOTE $\mathrm{NO}_{2} \rightarrow \mathrm{NO}+1 / 2 \mathrm{O}_{2}$ then $\mathrm{CO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ Does not score the first mark but scores 1 for the consequential second equation IGNORE state symbols even if incorrect	NO_{2} or any multiple other than 2 of NO_{2} on LHS for first mark only	2

Question Number	Acceptable Answers	Reject	Mark
19(b)(ii)	In (b)(ii) penalise incorrect/missing units but allow $\mathrm{J} / \mathrm{mol} \mathrm{K}$ and J/mol/K and lower case k FIRST CHECK THE FINAL ANSWER, If answer is $-13.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ or $-0.0133 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, award 2 marks $13.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} / 0.0133 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ (sign omitted) -13.3 / -0.0133 (units omitted) If none of the above answers is given First mark for correct data used Second mark value, sign and units consequential on incorrect entropy value(s) used in the correct expression $\begin{equation*} \left(\Delta S_{\text {system }}^{\circ}=\right)[210.7+213.6]-[197.6+240.0] \tag{1} \end{equation*}$		2

Question Number	Acceptable Answers	Reject	Mark
19(b)(iii)	FIRST CHECK THE FINAL ANSWER, If final answer is $\begin{align*} & +0.75839 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{2}\\ & +758.39 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{2} \end{align*}$ EITHER $\begin{align*} \left(\Delta \mathrm{S}_{\text {surroundings }}\right. & =) \frac{-\Delta H}{\mathrm{~T}} \mathrm{OR} \frac{-(-226)}{298} \tag{1}\\ & =0.75839 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{1} \end{align*}$ Second mark is for answer with correct unit OR $\begin{align*} \left(\Delta \mathrm{S}^{\ominus}\right. \text { surroundings } & \left.=) \frac{-\Delta H}{\mathrm{~T}} \operatorname{OR} \frac{(-226000)}{298}\right) \tag{1}\\ & =758.39 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{1} \end{align*}$ Second mark is for answer with correct unit ALLOW $\begin{equation*} -0.75839 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /-758.39 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{1} \end{equation*}$ IGNORE SF except 1 SF	$\begin{aligned} & -0.75839 \text { / } \\ & -758.39 \text { with } \end{aligned}$ no units	2

Question Number	Acceptable Answers	Reject	Mark
19(b)(iv)	First marking point $\begin{align*} & \left(\Delta S_{\text {total }}^{\ominus}=\Delta S_{\text {system }}^{\ominus}+\Delta \mathrm{S}_{\text {surroundings }}^{\ominus}\right) \\ & (=-13.3+758.39) /(-0.0133+0.75839) \\ & =(+) 745.09 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} /(+) 0.74509 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \tag{1} \end{align*}$ TE on (ii) and (iii) added together with the same units IGNORE SF except 1 SF IGNORE units, even if incorrect Second marking point (sign is positive so) reaction is (thermodynamically) feasible / spontaneous ALLOW feasible / will occur / reaction goes / it reacts (at 298 K) reactants thermodynamically unstable COMMENT If value for $\Delta S_{\text {total }}^{\ominus}$ is negative, then allow consequential mark for (sign is negative so) reaction is not feasible / not spontaneous / will not occur / reaction / it does not take place (at 298 K)	(ii) and (iii) added together with different units for first mark only	2

(Total for Question 19 = 16 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (a) (i i)}$	nucleophilic (1)		$\mathbf{2}$
	addition Note Do not allow 'addition' if $\mathrm{S}_{\mathrm{N}} 1 / \mathrm{S}_{N} 2$ are included in the answer. Words can be in either order	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (i)}$	If name and formula given, both must be correct $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl} /$ propanoyl chloride /	1	
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}_{-2 \mathrm{Cl}}$ ALLOW skeletal formula/any combination of displayed/structural formula Ignore $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{OCl}$ Comment Molecular formula without correct structural formula or name will not score.			

Question Number	Acceptable Answers	Reject	Mark
20(b)(ii)	If name and formula given, both must be correct		
	methylamine $/ \mathrm{CH}_{3} \mathrm{NH}_{2} / \mathrm{NH}_{2} \mathrm{CH}_{3}$	methyl	
amide			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (i i i) ~}$	4/four (peaks)		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
20(c)	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \rightleftharpoons \\ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \end{gathered}$ $\begin{equation*} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2} \tag{1} \end{equation*}$ rest of equation correct including $\mathrm{H}_{2} \mathrm{O}$, conditional on correct structure for ester ALLOW full displayed formulae or a combination of structural and displayed formulae ALLOW missing bracket around OH ALLOW \rightarrow instead of \rightleftharpoons ALLOW H^{+}above the arrow or eqm sign OR on both sides of the equation. Note: If candidate uses propan-1-ol/ $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ allow 1 mark for a completely correct equation $\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \rightleftharpoons \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$ OR $\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH} \rightleftharpoons \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	molecular formulae penalise missing H once only any other alcohol or acid used for both marks	2

Question	Acceptable Answers	Reject	Mark
20(d)	First marking point propan-1-ol/correct structural/displayed/skeletal formula/ ALLOW propanol and primary alcohol $/ 1^{\circ} / 1^{y}$ ALLOW $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ Second marking point - stand alone because the IR spectrum shows an absorption at 3750-3100 (cm^{-1}) due to the OH bond/OH group /alcohol/hydroxy(I) OR no peak at around $1700 / 2700-2775\left(\mathrm{~cm}^{-1}\right)$ so it is not an aldehyde Note - these could be shown on the spectrum as labelled peaks ALLOW any wavenumber or range within the ranges given above IGNORE any other peaks mentioned/references to bend/stretch/intensity	hydroxide	2

(Total for Question 20 = 13 marks)

Question Number	Acceptable Answers	Reject	Mark
21(a)(i)	$\begin{aligned} & \left(K_{\mathrm{p}}=\right) \\ & P_{\mathrm{H}_{2}} \times \frac{P^{2}}{} \times \frac{\mathrm{HI}}{P_{\mathrm{I}_{2}}} \end{aligned}$ ALLOW $P_{H I}{ }^{2}$ ALLOW lower or upper case p/pp/curved brackets IGNORE state symbols even if incorrect IGNORE missing x	square brackets expressions without $\mathrm{p} / \mathrm{pp} / \mathrm{P} / \mathrm{PP}$ to show partial pressure	1

Question Number	Acceptable Answers	Reject	Mark
21(b)	No effect because (there are) equal numbers of (gas) mole(cule)s on each side of the equation	Just 'equal numbers of mole(cule)s'	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
21(c)(i)	First mark (ΔH is negative/exothermic so) - $\Delta H / T$ gets less positive ALLOW decreases OR (ΔH is negative/exothermic so) $\Delta S_{\text {surroundings }}$ gets less positive ALLOW decreases Second mark (so, since $\Delta S_{\text {total }}=-\Delta H / T+\Delta S_{\text {system }}$) $\Delta S_{\text {total }}$ decreases Mark independently No TE on incorrect $\Delta S_{\text {surroundings }}$ Ignore comments based on K_{p}		2

Question	Acceptable Answers	Reject	Mark
21(c)* (ii)	First mark $\ln K=\Delta S_{\text {total }} / R$ OR $K=\mathrm{e}^{\Delta S \text { total } / \mathrm{R}}$ OR $\Delta S_{\text {total }}=R \ln K$ OR $\begin{equation*} \Delta S_{\text {total }} \text { is (directly) proportional to } \ln K \tag{1} \end{equation*}$ Second mark K_{p} decreases and yield (of HI) decreases consequential on their $\Delta S_{\text {total }}$ in (c)(i) Ignore comments based on Le Chatelier's principle	$\Delta S_{\text {total }}$ is (directly) proportional to K Just `equilibrium position moves to the left' without reference to yield and kp	2

Section C

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	Proton donor/donates protons OR H^{+}ion donor/donates H^{+}ions Ignore just releases H^{+}ions or protons.	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
22(a)(ii)	$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}}{\rightleftharpoons}$ OR $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2}^{-}}{\rightleftharpoons}+\mathrm{H}_{3} \mathrm{O}^{+}$ ALLOW \rightarrow for \rightleftharpoons ALLOW $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}+\mathrm{H}^{+}$ ALLOW $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{H} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2}^{-}+\mathrm{H}^{+}$ Ignore state symbols even if incorrect Ignore missing bracket around OH	HA and A once only in (a)(ii) and (a)(iii) Penalise missing H once only in (a)(ii) and (a)(iii)	1

Question	Acceptable Answers	Reject	Mark
$\begin{aligned} & \text { 22(a) } \\ & \text { (iii) } \end{aligned}$	$\left(K_{\mathrm{a}}=\right)$ $\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $\left[\mathrm{CH} \mathrm{H}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]$ OR $\frac{\left[\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2}^{-}-\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{H}\right]}$ OR $\frac{\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]}$ OR $\frac{\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{H}\right]}$ Note Allow any of these for the mark, even if a different equation using $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$has been given in (a)(ii)	$\mathrm{H}_{2} \mathrm{O}$ in expression Lack of square brackets HA and A^{-} once only in (a)(ii) and (a)(iii) Penalise missing H once only in (a)(ii) and (a)(iii)	1

Question Number	Acceptable Answers	Reject	Mark
22(a) (iv)	Comment Allow $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],[\mathrm{HA}],\left[\mathrm{A}^{-}\right]$as alternative formula throughout Calculation Ignore sf, except 1 sf, throughout First check the final answer If $\mathrm{pH}=2.34$, award the first $\mathbf{3}$ marks If $\mathrm{pH} \neq 2.34$, award marks as follows ROUTE 1 $\begin{align*} K_{\mathrm{a}}= & 10^{-3.86}=1.3804 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1}\\ {\left[\mathrm{H}^{+}\right] } & =\sqrt{ } K_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right] \\ & =\sqrt{ } 1.38 \times 10^{-4} \times 0.15 \\ & =4.5504 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ TE on their value for K_{a} $\begin{align*} \mathrm{pH} & =-\log _{10}\left[\mathrm{H}^{+}\right]=-\log _{10} 4.55 \times 10^{-3} \\ & =2.3420 / 2.34 \tag{1} \end{align*}$ TE on their value for $\left[\mathrm{H}^{+}\right]$provided $\mathrm{pH}>1$ and <7 ($\mathrm{pH}=0.12$ if use 3.86 for K_{a}, scores 2) ROUTE 2 $\begin{align*} & {\left[\mathrm{H}^{+}\right]=\sqrt{ } K_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]} \\ & \mathrm{pH}= \tag{1}\\ & =1 / 2 \mathrm{p} K_{\mathrm{a}}-1 / 2 \log \left[\mathrm{CH} \mathrm{H}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right] \tag{1}\\ & \quad=1 / 23.86-1 / 2 \log 0.15 \\ & \quad=2.34 \end{align*}$ TE on not halving (4.68 is worth 1 mark) Assumption 1 $\left[\mathrm{H}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}\right]$ OR no H^{+}from the (ionization of) water/ionization of water is negligible OR H^{+}is (only) from the acid Assumption 2 Ionization/dissociation of the (weak) acid is negligible / very small / insignificant OR $\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]_{\text {initial }}=$ $\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]_{\text {equilibrium }}$ OR $\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]_{\text {equilibrium }}=0.15\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ OR $\left[\mathrm{H}^{+}\right] /\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}\right] \ll\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]$ OR $\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right] /$ acid concentration remains constant	Incorrect units for K_{a} and/or $\left[\mathrm{H}^{+}\right]$, max 2 for calculation $\begin{aligned} & {\left[\mathrm{H}^{+}\right]_{\text {initial }}=} \\ & {\left[\mathrm{H}^{+}\right]_{\text {equilibrium }} /} \end{aligned}$	5

	ROUTE 3 First check the final answer If $\mathrm{pH}=2.35$, award the first 4 marks If $\mathrm{pH} \neq 2.35$, award marks as follows $K_{\mathrm{a}}=10^{-3.86}=1.38 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $\left[\mathrm{H}^{+}\right]^{2}=K_{\mathrm{a}}\left(\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]-\left[\mathrm{H}^{+}\right]\right.$ $\left[\mathrm{H}^{+}\right]^{2}=1.38 \times 10^{-4} \times\left(0.15-\left[\mathrm{H}^{+}\right]\right.$ $\left[\mathrm{H}^{+}\right]=4.48 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ ecf on their value for K_{a} $\begin{aligned} \mathrm{pH} & =-\log _{10}\left[\mathrm{H}^{+}\right] \\ & =-\log _{10} 4.48 \times 10^{-3} \\ & =2.35 \end{aligned}$ TE on their value for $\left[\mathrm{H}^{+}\right]$ Assumption $\left[\mathrm{H}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}\right]$ OR no H^{+}from the (ionisation of) water OR H^{+}is (only) from the acid	(1) (1) (1) (1) (1)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]_{\text {initial }}=} \\ & {\left[\mathrm{H}^{+}\right]_{\text {equilibrium }}} \end{aligned}$	

Question Number	Acceptable Answers	Reject	Mark
22(b)(i)	If answer is 13.2, with or without working, award 2 marks (13/13.17 score 1 mark, answer not to 1 dp) $\begin{align*} {\left[\mathrm{H}^{+}\right] } & =\frac{1.0 \times 10^{-14}}{0.15} \\ & =6.67 \times 10^{-14}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1}\\ \mathrm{pH} & =-\log _{10} 6.67 \times 10^{-14} \\ & =13.176 \\ & =13.2 \tag{1} \end{align*}$ TE on their $\left[\mathrm{H}^{+}\right]$, provided $\mathrm{pH}>7$ and <14 OR $\begin{align*} & \mathrm{pOH}=0.824 \tag{1}\\ & \mathrm{pH}=14-0.824=13.176=13.2 \tag{1} \end{align*}$	Answer not given to 1 dp Answer not given to 1 dp	2

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	Curve continues and finishes at any pH between 12 and 13.2 ALLOW this as standalone if they have no pH in (b)(i) or their pH is ≤ 10 TE on their pH in (b)(i) if it is >10	finishing at >13.2 or <12 curves that 'dip' by more than 1 small square at the end stopping before $45 \mathrm{~cm}^{3}$	1

Question Number	Acceptable Answers	Reject	Mark
22(b)(iii)	Indicator and colour change named indicator matching colour change phenol red yellow to red/pink OR thymol blue (base) yellow to blue OR phenolphthalein colourless to red/pink /magenta ALLOW bromothymol blue yellow to blue ALLOW thymolphthalein if they have continued to vertical section to at least 10.6 with colour change colourless to blue, for both marks ALLOW correct colour change for thymolphthalein even if the vertical section does not continue to 10.6 for 1 mark. NO TE for colour change from any other indicator Justification pH range (of indicator) lies (completely) in the vertical jump (on the titration curve) OR Indicator will change colour in the vertical section of the graph OR pH range of indicator and pH range of vertical section of the graph stated as long as they overlap ALLOW $\mathrm{p} K_{\text {in }}(\pm 1)$ is in the vertical jump OR $\mathrm{p} K_{\text {in }}$ is nearest to the pH at the end/equivalence point ALLOW Indicator will change colour at the end/equivalence point ALLOW (because it is a) titration of a weak acid with a strong base	Universal indicator loses all 3 marks	3

Question Number	Acceptable Answers	Reject	Mark
22(b)(iv)	the concentration of sodium lactate is 0.075 mol dm base have been mixed OR (only sodium lactate is present and it is the) pH at the equivalence/end point/ halfway up the vertical section of the curve	pH of buffer solution	$\mathbf{2}$
	ALLOw explanation or an equation to show that lactate ions react with water to produce an alkaline solution any number or range within $7.5-9.5$$\quad$ (1)		

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & \text { 22(b)* } \\ & (\mathrm{v}) \end{aligned}$	Comment Allow [HA], [${ }^{-}$] as alternative formulae throughout First mark - statement or equations showing the buffer solution buffer solution contains a large amount/reservoir /excess of a weak acid and its conjugate base/salt OR a large amount/reservoir /excess of lactic acid and lactate ions/formulae for lactic acid and lactate ions OR $\begin{align*} & \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}+\mathrm{H}^{+} / \\ & \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\ & \text {and } \\ & \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{(-)} \mathrm{Na}^{(+)} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}+\mathrm{Na}^{+} \tag{1} \end{align*}$ Ignore definitions of a buffer solution Second mark - identifying which species react with the added acid and alkali $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$ reacts with added alkali/ OH^{-}ions $\mathrm{OR} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow$ $\mathrm{OR} \mathrm{OH}^{-}$ions react with $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$ions and $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}$reacts with added acid/ H^{+}ions / $\mathrm{H}_{3} \mathrm{O}^{+}$ions $\mathrm{OR} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}+\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow$ OR $\left(\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\frac{\mathrm{lg}[\text { salt }]}{[\text { acid }]}\right)$ small additions of acid/alkali have little/no effect on lg [salt] so pH hardly changes/no change [acid] ALLOW Ratio [acid]:[salt]/[salt]:[acid] only changes a little so pH hardly changes/no change ALLOW HA and A^{-}in formulae/equations This mark may be given from the equations	Reservoir of H^{+} ions \rightarrow in equation \rightleftharpoons in equation	4

(Total for Question 22 = 21 marks)
TOTAL FOR PAPER = 90 marks

